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Abstract. The Fokker-Wheeler-Feynman theory of action-at-a-distance electrodynamics is 
not conformally invariant. It is shown how to modify it to restore conformal invariance, and 
it is proved that the modified theory yields Maxwell’s equations and gives Dirac’s expression 
for the radiation reaction. 

1. Introduction 

Very shortly after Einstein’s first paper on special relativity, it was pointed out by 
Cunningham (1909) and Bateman (1910) that Maxwell’s equations of electrodynamics 
are invariant not only under the ten parameter group of Lorentz transformations and 
translations in space-time, but under the fifteen parameter conformal group. (For 
a modern derivation of this result, see Bopp (1959)) Briefly put, the reason for this 
extended invariance is that the photon is massless, and in fact conformal invariance 
generally holds for theories involving massless particles (see, for example, Flato et al 
1970). Because of this one would expect that any derivation of classical electrodynamics 
from a principle of least action should also start from an action which is conformally 
invariant. 

One such derivation has been presented by Wheeler and Feynman (1945, 1949), 
in their theory of action-at-a-distance electrodynamics. They make use of an action 
which was originally written down by Fokker (1929), according to which particles 
interact by means of both the retarded and advanced Lienard-Wiechert potentials. 
I t  is this time-reversal symmetry which allows one to  write down an action in the first 
place. What Wheeler and Feynman showed was that this action-at-a-distance electro- 
dynamics need not violate causality, and is therefore worthy of more serious considera- 
tion than it might otherwise have attracted. 

It is the purpose of this paper firstly to  point out that the Fokker action of Wheeler 
and Feynman is not conformally invariant, and secondly, to propose a modification 
of the Fokker-Wheeler-Feynman action which is conformally invariant. It is shown 
that the electromagnetic field tensor in the modified theory satisfies Maxwell’s equations 
and gives the same radiation reaction as that derived by Dirac (1938). 

In 0 2 we give a brief summary of conformal transformations, and in $ 3  consider the 
transformation of fields and currents. In $ 4  it is shown that the Fokker-Wheeler- 
Feynman action is not conformally invariant, and a modified action, having conformal 

t On study leave from Physics Laboratories, University of Kent, Canterbury, UK. 

1817 



1818 L H Ryder 

symmetry, is written down. It is shown that the correspondingly modified electro- 
magnetic field tensor satisfies Maxwell’s equations. In Q 5 the radiation reaction is 
derived, and 0 6 concludes with some general remarks. 

2. Conformal transformations 

This section will be fairly brief; for more thorough reviews of conformal transformations, 
the reader is referred to  Wess (1960) and Fulton et a1 (1962). Conformal transformations 
induce scale transformations in space-time by a factor A(x) which itself depends on the 
coordinates x” : 

(1) 

The light cone is left invariant, and for this reason, as was mentioned above, conformal 
transformations acquire considerable significance in theories of massless particles, 
like photons and gravitons. The easiest way of obtaining an expression for the most 
general conformal transformation is to  consider the discrete transformation of inversion 
in the hypersphere 

d P  dZv = I(x) dx” dx,. 

X’ 

If we now perform the sequence inversion-translation-inversion 

then we see that 

x” + c”x2 
1 + 2c . x + c2x2. 

p = 

This is the most general conformal transformation. It follows from (2) that 
,L ., L 

A - A X”2, = ($ = -- 
1+2c .x+c2x2  a(x) (3) 

where 

o(x) = 1+2c .x+c2x2,  (4) 

(..s-1’)2 = 6- ‘(x)a-’(y)(x-J’)2 ( 5 )  

(dX)2 = a-2(x)(dx)2 (6) 

I ( x )  = o-Z(x). (7) 

and that 

so that 

as in ( l) ,  where we identify 

From (3), if o(x) = c2[x+(c/c2)I2 < 0, the sign of X 2  is different from that of x2, so a 
time-like vector becomes space-like and vice versa. Because this heralds a possible 
violation of causality, a common attitude to conformal invariance in physics is to 



Conjormal invariance and action-at-a-distance electrodynamics 1819 

believe that if it is relevant at all: then it is only iltfinitesimal transformations that are 
relevant. This is the attitude we propose to adopt. 

Because the interval (dx)* is not invariant, as seen in (l), the metric tensor does not 
behave as a true tensor under conformal transformations, but as a tensor density 

Since, by definition, the contravariant components of dx” transform as 

then 
(dX)2 = gJZ) d.?’ dF‘ 

as in (6) .  
The operator ?,‘ = 2/2xp transforms like a covariant vector 

- axp, s,, = -0 (2FW P 

while 8’ = gpvdv transforms as a contravariant tensor density 

(12) 

It is characteristic of conformal transformations that the covariant and contravariant 
components of tensors transform with different weight factors. This is because gpv 
is a tensor density. 

Momentum p’ transforms in the same way as a”, so we may deduce the transforma- 
tion law for mass 

that is, 
vn = o(x)m = (1 + 2c . x + c2x2)m. 

This is quite pathological behaviour. The mass of a particle changes, according to (14) 
under a conformal transformation, and, what is more, in a particular ‘conformal frame’ 
defined by c”, it changes along the particle’s own world line. The physical meaning of 
this is, to say the least, obscure; the only thing we may say is that there is no difficulty 
if m = 0. We see again the special role of massless particles in conformal theories. 

Finally, we require the transform of the Dirac delta function. If a(x), o(y) > 0, it 
follows from ( 5 )  that 

(15) M Z  - j j ) ?  = o(x)dy)6((x - Y l 2 ) .  
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3. Transformation of fields and currents 

Since d? = ( a F / a x a )  dxa ,  equation (1) may be written 

where (7) has been used. Taking the determinant of (16) gives 

ax 
det - = C J - ~ ( X )  = iz(x). 

dX 

It then follows from (16) and (17) that 

is a Lorentz matrix 

ApvAv, = 6:. 

A field $, since it has well defined behaviour under Lorentz transformations, will then 
behave under a conformal transformation as (Isham et al 1970) 

I is a Lorentz scalar, called the weight. As an example, a tensor field B+(x)  of weight I ,  
will transform as 

It follows from (9) that B,(x) = gpVBv(x)  transforms as 

in further demonstration of the fact that the covariant and contravariant components 
of a tensor (density) field of a given weight I ,  pick up different powers of CJ under con- 
formal transformations. 

We assume that the electromagnetic four-vector potential A p ( x )  transforms like 
P, in accordance with the usual prescription 8. -+ dp-ieAp for the introduction of 
electromagnetic interactions. Comparing (13) with (18) implies that I = - 1 : 

?X’ 
= - -A. (X) .  ax. 

(20) 

An invariant action must have 1 = 0 ;  this implies that the Lagrange density Y 
must have I = -- 4. If the interaction Lagrangian is 
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this implies that the current density j ,  must have 1 = - 3 .  so 

ax, 
jP(x) = O ~ ( X ) ~ ~ ~ ( X )  

j&i) = a2(x) - - jv (x) .  

ax 

axv  
a x p  

3.1. Maxwell's equations 

The two homogeneous Maxwell's equations curl E = -aB/at and div B = 0 have the 
respective solutions E = -grad #J - aA/dt and B = curl A ,  or, in covariant notation 

F,, = d , A , - a , A , .  (22)  
The inhomogeneous equations div E = p and -(aE/at)+curl B = j  are then 

a p F , ,  = j , .  

Substitution of (22)  into (23)  gives 

02A"-avapAf l  = j y .  (24) 

8,A" = 0 (25)  

n2A' = j v  (26)  

In the Lorentz gauge 

(24)  becomes 

whose solution is the (advanced and/or retarded) Lienard-Wiechert potential. 
Now it is straightforward to  verify, using(20) and (21), that both sides of equation (23)  

behave in the same way under conformal transformations. However, equation (25)  is 
not conformally invariant. By direct computation from ( 2 )  

ax ,  _ -  - ( 1  + 2 c .  x + c2x2)-2[s:( 1 + 2c . x + c2x2) ax' 
+ 2(c"x, - c,x@)+ 4 c ~ x , c  . x - 2(C",X2 + x,x,c2)], 

and using this, together with equations (4) ,  (12)  and (20)  gives, to order c ,  

;,Ap = 0 apAP = -4cVAv.  (27)  
Thus (25)  and (26)  are not conformally invariant ; conformal transformations and gauge 
transformations are not independent. It follows of course, that even in the absence of 
interactions, the equation 0 2 A p  = 0 is not conformally invariant. The easiest way to 
see this is to note the highly irregular transformation law for the d'Alembertian 

- 
O 2  = o 2 n 2  + 80~c,d' 

to order c. 

4. Modification of the Fokker-Wheeler-Feynman action 

In action-at-a-distance electrodynamics no reference is made to a field. Instead, particles 
interact directly (though the signals propagate with finite velocity), in such a way that 
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the action 

4 =  - c  mxc j (dx, dx”)”’ + I 6((x - y)’) dx, dy’ (28) 

is an extremum. ’This is Fokker’s action (Fokker 1929) and is used by Wheeler and 
Feynman (1949). In (28), the symbols x and y do  service both for particle labels and for 
the distance in space-time along their world lines. Note that in the second, interaction, 
term in J, self-interactions are omitted. Thus the usual infinities associated with them 
do not occur. At the same time, however, the delta function 

X X < Y  

1 
2R 

where R = Ix-yl, r = x o - y o ,  shows the presence of both advanced and retarded 
effects. Wheeler and Feynman (1945) were able to  show that the assumption that all 
radiation is eventually absorbed implies that : (a) there is no violation of causality; (b )  an 
oscillating charged particle experiences a radiation reaction of exactly the type postulated 
by Dirac (1938). 

Now let us turn to considerations of conformal invariance. Since conformal trans- 
formations leave the light cone invariant, c is invariant, and it follows immediately from 
equations (11) and (14) that the first term in J is invariant. In the second term, however, 

~ ( ( x - Y ) ~ )  = 6 ( R 2 - c 2 r 2 )  = -[6(R-cr)+6(R+cr)] 

dx, dy’ = gPy dx, dy’ (29) 

is not covariant. We have 

so that dx, behaves as a vector ut x, and dy’ as a vector at y ,  but the contraction (29) is 
not a scalar, for what would we put for g,,? Do we evaluate it at x or at y? grV needs 
to be replaced by a ‘conformal metric tensor’ h,, (introduced by Boulware er al 1970) 
which has the property that its p index transforms as a vector at x, and its v index as a 
vector at y .  This requirement is satisfied by 

h,,(x, y) = --(x - y )  

I t  follows from ( 5 )  and (12) that 

(31) 
1 2 a  t 
2 ax c y  ln(x - y)’ = g,, - 2(x - y)- 2(x - y),(x - y)”. 

I t  then follows from ( 1 3 ,  (30) and (32) that dx’ dy‘ h,,(x, y)S((x - J ) ) ~ )  is invariant 

d.?‘ dJ’ h J Z ,  P ) C ~ ( ( X - J ) ~ )  = dx’ dy” h J x ,  y ) f i ( ( x - ~ ) ~ )  (33) 

and hence that Fokker’s action (28) is not conformally invariant, but that the modified 
action J c  is. where 
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In order to discover the consequences of using this action, we need an expression for the 
effective vector potential. Wheeler and Feynman point out that if we define 

rr 

A,”F(x) = : e ~((x-Y)’) dy, J (35) 

as the effective vector potential induced at x by a particle of charge e moving along a world 
line y ,  then the condition that the action J in equation (28) is an extremum under varia- 
tion of the world line of particle x results in the desired Lorentz equation of motion. 
ATF((x) automatically obeys the Lorentz gauge condition 

fYATF(x) = 0. (36) 
Now it  follows from (15), (20) and (30) that the definition (35) is not conformally 

covariant, for the two sides of the equation have different transformation properties 
under conformal transformations. However, the condition that the Lorentz equation of 
motion be satisfied if the modified action J c  is an extremum under variation of the world 
line of x, is that the vector potential be given by 

AE(x) = : e b((x - y)2)hv,(y ,  x) dy” = e S((x - ~)~)h,,(x, y) dy”, (37) s s 
and from (20), (15), (32) and (30) it is seen that this is conformally covariant. 

Wheeler and Feynman also define the current 

j,(x) = 4 m  S4(x-y) dy, . s 
Because of the identity 

02S((X - y)2) = 4nS4(x - y )  (39) 

it follows that (in the Lorentz gauge) Maxwell’s equations (26) are satisfied when A ,  is 
given by (35) and j ,  by (38). Since I have found no proof of (39) in the literature, I give 
one in an appendix to this paper. 

Is the definition (38) conformally covariant? From (9) and (10) it follows that 

Since the four-dimensional delta function transforms by multiplication with the Jacobian, 
which is given by (17), we have 

64(X-Y) = a4(x-y)64(x-1.). (41) 

I t  then follows that 

s axv 
S4(.Z-J) dY, = c 2 ( x ) S  S4(x-y) dy, s 

and hence that the right-hand side of (38) has the transformation properties required of 
a current, given in (21). So (38) is conformally covariant. 

4.1. Maxwell’s equations 

Now that we have a conformally covariant vector potential given by (37) and current 
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given by ( 3 Q  we must show that they satisfy Maxwell’s equations. We begin by using (31) 
to write 

(x - Y ) , b  - Y), 
(X - YI2 

ds = e [ 6((x - ~ ) ~ ) j ,  ds - 2e 1 6((x - y)’) 

= : A y ( X )  - A,o(x), (42) 

where the dot represents differentiation with respect to s, the world-line parameter of 
particle y. ATF is the Wheeler-Feynman vector potential given by (35). We know that it 
satisfies Maxwell’s equations, so, since they are linear, we now have to show that A: 
also does. We need the identities 

a 
- M X  - YI2 )  = ax, - Y ) , W  - Y I 2 )  

where the prime represents differentiation with respect to the argument of the delta 
function, and the last equality follows from the well known identity 6‘(x) = -6(x)/x. 
We then have (where a, = a/axv) 

Since the first two terms and the last one in (44) are symmetric in p and v, they do not 
contribute to FEV a,A: - a,A: which is therefore given by 

We note that FE, # 0, so F;, # F F .  We shall now show, however, that 

so that 
aPF;, = 0 (46) 

8 F C  ,V = apF,W,F = j,. (47) 
These are Maxwell’s inhomogeneous equations (23). Making further use of (43), we 
have 

= -2eJ-( d 6((x-Y)2) 
ds (x-y)* (48) 

Maxwell’s equations are therefore satisfied. However, since FE, # FE we still have to 
check by explicit calculation that the two field tensors give the same radiation reaction, 
which, as Feynman and Wheeler (1945) showed, is the same as Dirac’s. We do this in 
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the next section. Before concluding this section, however, it is of interest to note that 
A; also obeys the Lorentz condition (25), as may be seen from (44). This does not contra- 
dict the conformal invariance of the theory, for conformal transformations and gauge 
transformations are not independent. It simply appears that action-at-a-distance 
theories select a particular gauge for A,, , and it is neither here nor there that it happens to  
be the Lorentz gauge. What matters is that A;, as defined, is conformally covariant and 
satisfies Maxwell’s equations. 

5. Radiation reaction 

First of all let us calculate FF. From (42) and (43) we have, by straightforward manipula- 
tion 

By using the formula (see Dirac 1938) 

equation (49) may be written 

By identifying s with proper time, we have j a j L  = 1, and so the term with this coefficient 
in (51) varies as ( x - y ) - ’ ,  whereas all the other terms vary as ( x - y ) - l .  This term may 
therefore be neglected. Wheeler and Feynman (1945) in the section ‘Radiative reaction : 
derivation 111’ showed that the resulting expression gives, for the field of radiative 
reaction at the source 

(52) 
2e 

Fpv,ml = -(3 3 , , v  Y - Y  P V  )i 1 

in agreement with that given by Dirac. 
In the conformally covariant theory, we have 

FE, = FF- F,”, 

where, from (45) and (50) 

(x - y ) 2  = 0 .  

(53) 

(54) 

We see immediately that F:, varies with separation between source and field points as 
( x - y ) - ’ ,  and may therefore be neglected in comparison with the dominant terms in 
FF. The resulting radiation reaction is then clearly given by Dirac’s expression (52). 
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6. Concluding remarks 

We have shown that it is possible to  modify the Fokker-Wheeler-Feynman action to an 
explicitly conformally invariant form. This new action satisfies Maxwell's equations 
and gives the correct value for the radiation reaction of Dirac. 

It may be of interest to note that Ramond (1973) has recently drawn attention to some 
parallels between action-at-a-distance theories and dual resonance models. By showing 
that action-at-a-distance electrodynamics can be made conformally invariant, it may 
be that we have uncovered another possible connection between the two theories, 
since dual resonance models have conformal invariance. However, it is important to 
note that our conformal transformations are in four-dimensional space-time, whereas 
dual models have conformal symmetry in two dimensions. 
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Appendix 

We are to prove that 

where x 2  = x i  - x:  - x:  - x : ,  and O2 = Pa,, = (d /ax; )  - V2. We shall use, throughout 
this appendix, the notation 1x1 = r. We first write 

[6(xo - r )  + 6(xo + r ) ] .  (A.2) 
1 

6 ( x 2 )  = 6 ( x ; - r 2 )  = 

Using the identity 

d ( X )  6 ' (x)  = -- 
X 

it is easy to see that 

and that 

6 ( x 0 - r )  6(xO+r) 
x o - r  x o + r  

a 
- [ 6 ( x 0 - r ) + 6 ( x 0 + r ) ]  = ~ - _ _ _  dXi (A.4) 
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where i = 1,2,3,  so that 

a2 -[d(XO - r )  + 6(XO + r)]  ax; 

where i is not summed over, and 

V2[6(xo - r )  + 6(xo + r)]  

Now we have 

[ 6 ( x o - r ) + 6 ( x 0 + r ) ]  I 

. V[S(XO - r )  + 6(XO + r)]  I1 

1 
2r 

+ - V 2 [ 6 ( x o  - r ) + 6 ( x 0  + r ) ] .  I I I  

By using the identity 

we see that the first term in (A.7) is 

I = - 2 n 6 3 ( x ) [ 6 ( ~ 0  + r )  + S(xo - r)]  = - 4 7 ~ 6 ~ ( x ) .  

Similarly 

6(x0-r) 6 ( x o + r )  
x o - r  x o + r  

11 = -_ 

and 

(A.l) then follows from (A.3) and (A.7HA.10). 
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